
A Simulation Method to Analyze Chemo-Mechanical
Behavior of Swelling-Induced Shape-Memory
Polymer in Response to Solvent

Haibao Lu

National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,
Harbin Institute of Technology, Harbin 150080, People’s Republic of China

Received 28 December 2010; accepted 25 March 2011
DOI 10.1002/app.34597
Published online 9 August 2011 in Wiley Online Library (wileyonlinelibrary.com).

ABSTRACT: A network of thermally responsive shape-
memory polymers (SMPs) could imbibe a quantity of
solvent molecules to swell, and subsequently induces a
chemical potential change in polymer. When an equili-
brium is reached between the mechanical load and the
chemical potential of polymer network and solvent, the
SMP polymer usually swells with a field of inhomogene-
ous and anisotropic deformation, which is considered to
be equivalent to a hyperelastic field. We implement this

theory in the free-energy function equation, and analyze
examples of swelling-induced deformation and shape
recovery behavior. This work may provide a powerful tool
to study complex swelling-induced shape-memory behav-
ior of SMPs in response to the immersing solvents. VC 2011
Wiley Periodicals, Inc. J Appl Polym Sci 123: 1137–1146, 2012
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INTRODUCTION

As is well known, stimulus-responsive shape-mem-
ory polymers (SMPs) have increasingly received con-
siderable attention from scientific and engineering
communities, due to their unique characteristic that
is able to actively respond to a specific stimulus by
means of significantly changing their shape and/or
maneuvering accordingly. They are a class of unique
macromolecules with the capacity of memorizing
their original shape after undergoing a shape defor-
mation.1 The basic molecular architecture of SMPs is
a polymer network underlying active movement.
Almost all SMPs are incorporated of two segments,
where one segment with relative higher elastic and
transition temperature is defined as hard segment,
and the other is able to remarkably reduce its stiff-
ness in the presence of a particular stimulus.2 The lat-
ter segment (relatively named as transition or switch-
ing segment) can be either a molecular switch or a
stimulus-sensitive domain. On exposure to a specific
stimulus, the switching/transition is triggered, which
consequently results in the shape recovery. In addi-
tion, the transition temperature of hard segment is
more 20�C than that of soft segment.

SMPs have a far higher recoverable strain (up to
400%), much lower density, more convenient proc-
essing and fabrication techniques, and more easily
tailored properties (e.g., transition temperature, stiff-
ness, bio-degradability, functional gradient) to better
accommodate the requirements of a particular appli-
cation.2 Furthermore, one of the most notable fea-
tures of these materials is that shape recovery of
SMP can be triggered not only by directly heating,
light,3 laser,4 electrical current,5–8 magnetic field9,10

but also can be induced by water11 or solvent.12–14

These activation approaches have promoted
researchers to utilize SMPs as sensors and actuators,
deployable structures, drug-delivery systems, and
biomedical devices.2,15

Recently, we have identified a new approach to
trigger the shape recovery of styrene-based SMP by
solvent.12–14 Instead of heating, the SMP has been
demonstrated to recover to its original shape by
immersing it into solvent at room temperature, i.e.,
chemo-responsive shape recovery. The recovery is
induced by the plasticizing effect of solvent mole-
cules on polymer network, resulting in glass transi-
tion temperature (Tg) of the SMP indirectly declined.
Hence, instead of heating the SMP above switching
temperature, shape recovery can also be initiated by
inductively lowing switching temperature through
plasticizing effect.16,17 Flexible, long polymeric
monomer could crosslink into a three-dimensional
network. When the polymer is brought in contact
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with a solvent, polymer network imbibes solvent mol-
ecules and swells, resulting in solvent molecules ag-
gregate known as a gel.18,19 The gel has characteristics
of both a solid and a liquid: elastic deformation and
viscous migration between the polymer network and
solvent. The solvent-swollen polymer can undergo
large deformation resulting from the long-range migra-
tion of the solvent molecules, making both shape and
volume of solvent-swollen polymer changed, to reach
the equilibrium with both the mechanical load and the
external solvent. Therefore, these effects could be uti-
lized to trigger shape recovery of SMP through lowing
internal energy by mixing with solvent.

This article deals with the presentation of the
achieved equilibrium after a SMP network has been
in contact with a solvent and swells. In the absence
of longitude uniaxial force mechanical load or geo-
metric constraint, a homogenous and isotropic net-
work will equilibrate with the solvent by a homoge-
nous and isotropic deformation. In subsequence, it
shows the inhomogeneous field in a solvent-swollen
polymer equilibrates with the solvent and longitude
uniaxial force. We implement this theory in the free-
energy equation to identify free and constraint swel-
ling-induced shape recovery. And we hope that this
work will enable to construct the chemo-mechanical
behavior of SMP in response to solvent.

FREE-ENERGY CHANGE AND CHEMICAL
POTENTIALS ON MIXING POLYMER AND

SOLVENT

A polymer dissolves or swells in a solvent if, at con-
stant temperature and pressure, the total Gibbs free-
energy decreases along with mixing. Therefore, it is
necessary that the following hold20:

DGm ¼ DHm � TDSm < 0; (1)

where DGm is the Gibbs function on mixing, DHm is
the enthalpy change on mixing, T is the temperature
and DSm is the entropy change on mixing. For most
polymers, the enthalpy change on mixing is nega-
tive. This necessitates that the change in entropy be
sufficiently positive if mixing is to occur.

The classical Flory–Huggins theory assumes at the
outset that there is neither a change in volume nor a
change in enthalpy on mixing a polymer with a low
molecular-weight solvent.20–22 Thus, the calculation
of the free-energy change on mixing at a constant
temperature and pressure could be simplified into a
calculation of the change in entropy on mixing. This
latter quantity is determined under the help of a lat-
tice model with formulas from statistical thermody-
namics.22,23 As shown in Figure 1, an empty lattice
begins with the number of ways, (X), of arranging
n1 solvent molecules and n2 polymer molecules in the

n0 ¼ n1 þ mn2 lattice sites, wherein each polymer mol-
ecule occupies m sites. As previously presented, the
molecular structure of SMP contains two segments.
One is highly elastic segment, the other is transition
segment. Actually, the m sites occupied by each poly-
mer molecule are incorporated of two parts, one is for
elastic segment, and the other is for transition seg-
ment. Therefore, the m divides into m1 plus m2, where
m1 sites are occupied by elastic segment, m2 sites are
occupied by transition segment. The m can be given
by m ¼ m1 þ m2. Because the heat change on mixing is
assumed to be zero in the simulation, each arrange-
ment has the same energy and probability to occur.
The only restriction is imposed by the connectivity of
polymer chain segments.20 It must be ensured that the
interconnected polymer segments lie on the nearest
neighboring lattice sites. Once the number of ways,
(X), is known, the entropy Sm of the mixture is given
by k lnX, where k is the Boltzmann’s constant.
To calculate the change in entropy that occurs

from the mixing process, it is first arranged to
reserve all the polymer macromolecules on the lat-
tice. The identical solvent molecules are placed
thereafter. Having arranged all of the polymer mole-
cules, the number of ways of filling all of the indis-
tinguishable solvent molecules in the remaining lat-
tice sites is exactly one. As a result, the total number
of ways of placing all the polymer and solvent mole-
cules on the lattice is given by eq. (2):

Sm ¼ k lnX: (2)

It is evident that n1/n0 equals the volume fraction
of the solvent f1, and mn2/n0 equals the volume
fraction of the polymer f2.

21 Thus,

Sm ¼ �k ln n1 ln/1 þ n2 ln/2½ �: (3)

Then, the change in entropy on mixing n1 moles
solvent molecules with n2 moles polymer molecules

Figure 1 Schematic diagram of a polymer molecule on a
two-dimensional lattice [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.].
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can be calculated by multiplying the right-hand side
of eq. (3) with the Avogadro’s number, namely,

Sm ¼ �Nk ln n1 ln/1 þ n2 ln/2½ �
¼ �R ln n1 ln/1 þ n2 ln/2½ �; (4)

where R is the universal gas constant, as well as n1
and n2 now represent numbers of moles. Note that if
m equals unity, f1 and f2 would equal the mole
fractions. And eq. (3) could be treated as entropy
change equation of mixing ideal molecules.23,24

On the other hand, it is known that the enthalpy
change DHm equals to the internal energy change
DU on mixing, when the change in volume on mix-
ing is zero.20 Thus, the enthalpy change on mixing
can be expressed as,

DHm ¼ kTv1n1/2: (5)

This expression reveals that the enthalpy change
DHm depends on the nature of both the solvent and
the solute, and is the only Flory–Huggins interaction
parameter v1 function in the model. Submitting eqs.
(4) and (5) into, (1) we obtain,

DGm ¼ kT n1 ln/1 þ n2 ln/2 þ v1n1/2½ �: (6)

The chemical potential could be defined as a par-
tial molar Gibbs free-energy, and the fact that,

DGm ¼ DGmixture � G1 � G2; (7)

so that

DGmixture ¼ G1 þ G2

þ RT n1 ln/1 þ n2 ln/2 þ v1n1/2½ �; ð8Þ

Differentiating eq. (8) with respect to n1 and n2, in
turn, gives the following,

l1 ¼
@Gmixture

@n1
¼ g1

þ RT ln/1 þ
n1
/1

@/1

@n1
þ n2
/2

@/2

@n1
þ v1/2 þ v1n1

@/2

@n1

� �
; ð9Þ

l2 ¼
@Gmixture

@n2
¼ g2

þ RT
n1
/1

@/1

@n2
þ ln/2 þ

n2
/2

@/2

@n2
þ v1n1

@/2

@n2

� �
; ð10Þ

where g1 and g2 are the molar free energies of the
solvent and polymer, respectively. Recognizing that
/1 ¼ n1

n1þmn2
and /2 ¼ mn2

n1þmn2
, gives the following,

@/1

@n1
¼ /2

n1 þmn2
; (11)

@/1

@n2
¼ � m/1

n1 þmn2
; (12)

@/2

@n1
¼ � /2

n1 þmn2
; (13)

@/2

@n2
¼ m/1

n1 þmn2
: (14)

Equations (11)–(14) are submitted into eqs. (9) and
(10), and simplifying gives23

l1 � l01
RT

¼ lnð1� /2Þ þ /2

�
1� 1

m

�
þ v1/

2
2; (15)

l2 � l02
RT

¼ ð1� /2Þð1�mÞ þ ln/2 þ v1mð1� /2Þ2; ð16Þ

in which g1 and g2 have been relabeled l01 and l02,
respectively. The preceding two equations can now
be used for examining phase equilibrium.
Based on eq. (16), l2 � l02/RT function with

respect to f1 can be expressed as,

l2 � l02
RT

¼ /1ð1�mÞ þ lnð1� /1Þ þ v1m/2
1: (17)

If we mix n1 moles solvent molecules with n2
moles polymer molecules, with molecular weight
ratio of 1 : m, the change in chemical potential of the
polymer on mixing can be calculated from eq. (17).
For a fixed v1, we can easily plot the curve for l2
� l02/RT function against to f1. By changing v1
and repeating this procedure, we would get a fam-
ily curves for chemical potential change, because
there is a one-to-one correspondence between v1
and l2 � l02/RT. Such a plot is shown in Figure 2
for m equaling 1000, taken from the work of Flory.
Note that increasing v1 is equivalent to making it
more difficult to mix polymer molecules with sol-
vent molecules.

FLORY–REHNER FREE-ENERGY FUNCTION

A network of polymers immersed in a solvent and
subject to mechanical loads

A cubic SMP block is immersed in a solvent to
be studied. In the referenced state, no external
loadings are applied on the block, and no solvent
molecules are absorbed inside the block with
dimensions of L1L2L3. Exposing the polymer to
solvent, the polymeric block is assumed to imbibe
solvent molecules that diffuse into the interstitial
space of the polymer chains. It is assumed that
weights applied on the six surfaces of the block
results in the dimensions of polymeric block
changed to l1l2l3.

25 Denote the stretches of the
block by,
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k1 ¼ l1
L1

; k2 ¼ l2
L2

; k3 ¼ l3
L3

: (18)

The six weights apply neat forces F1, F2, and F3 to
the block in three directions. Define the nominal
stresses S1, S2, and S3 in the polymer by,

S1 ¼ F1
L2L3

; S2 ¼ F2
L3L1

; S3 ¼ F3
L1L2

; (19)

The weights may allow the polymer to deform
without constraint, and the small molecules to dif-
fuse into the polymer. Denote the true stresses by r1

¼ F1/(l2l3), r2 ¼ F2/(l3l1), and r3 ¼ F3/(l1l2), which
relate to the nominal stresses by S1 ¼ r1k2k3, S2 ¼
r2k3k1, and S3 ¼ r3k1k2.

26

Let C be the number of the solvent molecules in
the polymeric network, and M denote the nominal
concentration of the small molecules by20

C ¼ M
.
ðL1L2L3Þ: (20)

It is assumed that both polymer molecules and
solvent molecules are incompressible, as well as
there is no void space inside the polymer block. Let
m be the volume of per solvent molecule. When the
M solvent molecules are diffused into polymer, the
volume of the polymer changes from L1L2L3 to l1l2l3
¼ L1L2L3 þ mM. Dividing this expression by L1L2L3,
we obtain that

k1k2k3 ¼ 1þ mC: (21)

The polymer, the solvent and the weights, to-
gether constitute a thermodynamic system. Let W be
the free-energy of the polymer in the current state

divided by the volume of the polymer in the refer-
enced state, characterized by the generalized coordi-
nates k1,k2, k3, and three control parameters F1,F2,
F3. The free-energy of the system, of which the sum
of that of the polymer, is given by,26

G ¼ W k1; k2; k3ð ÞL1L2L3 � F1 l1 � L1ð Þ
� F2 l2 � L2ð Þ � F3 l3 � L3ð Þ: ð22Þ

Thermodynamics dictates that the left-hand free-
energy reaches to a minimum value as the system
gets a stable state. When the generalized coordinates
vary slightly from (k1,k2, k3) to (k1 þ dk1, k2 þ dk2,
k3 þ dk3) the free-energy of the system varies by26

@G

L1L2L3
¼ @W

@k1
� S1

� �
dk1 þ @W

@k2
� S2

� �
dk2

þ @W

@k3
� S3

� �
dk3;þ @2W

@k21
dk21 þ

@2W

@k22
dk22 þ

@2W

@k23
dk23

þ @2W

@k1@k2
@k1@k2þ @2W

@k2@k3
@k2@k3þ @2W

@k1@k3
@k1@k3: ð23Þ

In equilibrium, the coefficients of the first varia-
tions vanish,

S1 ¼ @W

@k1
; S2 ¼ @W

@k2
; S3 ¼ @W

@k3
: (24)

In deriving eq. 24, we have regarded S1, S2, S3 as
the loading parameters set by the weights. There-
fore, S1, S2, S3 are also regarded as the functions of
the generalized coordinates (k1, k2, k3). As a result,
the free-energy function of the polymer, W(k1, k2,
k3) is determined by the generalized coordinates
(k1, k2, k3). Furthermore, to ensure that a state (k1,
k2, k3) minimizes G, the sum of the second-order
variations must be positive for arbitrary variation of
dk1, dk2, dk3.

26

Homogeneous state of deformation
for free swelling

Based on above-mentioned, in a case when a non-
ionic solvent-swollen polymer is subject to a solvent
and stresses are applied, there are three contribu-
tions to the free-energy of the solvent-swollen poly-
mer and they are: stretching free-energy, mixing
free-energy and polarizing free-energy. The follow-
ing equation can be used to account for it.23

W ¼ Ws þWm þWc: (25)

To systematically explain and substantiate the
applicability of eq. (25), the following part will pres-
ent the respective effect of three contributions on the
free-energy function. At first, the polarizing potential

Figure 2 Polymer chemical potential as a function of sol-
vent volume fraction for m ¼ 1000. The value of v1 is indi-
cated on each curve [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.].
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sometimes is assumed as zero. The free-energy equa-
tion should be rewritten as

W ¼ Ws þWm: (26)

The free-energy of stretching a network of poly-
mers is taken to be (Flory, 1953),23

Wsðk1; k2; k3Þ ¼ 1

2
NkTðk21 þ k22 þ k23 � 3

� 2 log k1k2k3Þ; ð27Þ

where N is the number of chains in the polymer
divided by the volume of the polymer block in the
referenced state, and kT is the temperature in the
unit of energy.

When the polymers are not cross-linked, the poly-
mers and the small molecules can form a solution.
The mixing free-energy is taken to be (Flory, 1942;
Huggins, 1941),23

WmðCÞ ¼ � kT

m
mC log 1þ 1

mC

� �
þ v
1þ mC

� �
; (28)

Here mC is the volume of the solvent molecules in
the network divided by the volume of the polymers.
Thus, the expression26 can be substantiated by,

W ¼ 1

2
NkTðk21 þ k22 þ k23 � 3� 2 log k1k2k3Þ

� kT

v
mC log 1þ 1

mC

� �
þ v

1þ mCð Þ
� �

: ð29Þ

Considering a cubic solvent-swollen polymer
without constraint to be stretched in three directions,
and the stretches of polymer to a fixed value,
namely k1 ¼ k2 ¼ k3 ¼ k. Thus, the 1 þ mC can be
calculated by inputting k into eq. (21), namely 1 þ
mC ¼ k3. Equation (29) can be rewritten as,

W ¼ 3

2
NkTðk2 � 1� 2 log kÞ

� kT

v
ðk3 � 1Þ log k3

k3 � 1

� �
þ v

k3

� �
: ð30Þ

We denote this free-swelling stretch by k, which
relates to the chemical potential l, and the differen-
tial change of polymer is equal to the negative value
of solvent. For example, in the case of ‘‘1,’’ the molar

numbers of polymer and solvent are x11 and x12 in the

system (where x11 þ x12 ¼ 1), respectively. In the case
of ‘‘2,’’ the molar numbers of polymer and solvent

are x21 and x22 in the system (where x21 þ x22 ¼ 1),
respectively. From case ‘‘1’’ to ‘‘2,’’ the change in the

mole of solvent is x22 � x21 ¼ dC. While the change in

the mole of polymer is x12 � x11 ¼ (1 � x22) � (1 � x21)

¼ �(x22 � x21) ¼ �dC. So the change in chemical
potential of polymer l2 can be expressed as,

l2 ¼
@W

@ �Cð Þ ¼ � @Ws

@C
þ @Wm

@C

� �
: (31)

l2 ¼
@W

@ �Cð Þ ¼ � @Ws

@C
þ @Wm

@C

� �
¼ �NkTv

1

k
� 1

k3

� �

� kT log
k3 � 1

k3
þ 1

k3
þ v

k6

� �
: ð32Þ

So, the eq. (32) can be rewritten as,

l2
kT

¼ �Nv
1

k
� 1

k3

� �
� log

k3 � 1

k3
þ 1

k3
þ v

k6

� �
: (33)

We will normalize the chemical potential by kT. A
representative value of the volume per solvent mole-
cule is m ¼ 10�28 m3. The Flory–Rehner free-energy
function introduces two dimensionless material
parameters: Nm and v. Where the Nm is given the
range Nm ¼ 10�4 : 10�1.25 In the numerical examples
below, we will take the value Nm ¼ 10�3. The
parameter v is a dimensionless parameter to mea-
sure enthalpy change of mixing, with representative
value v ranged from 0 to 1.2. For applications that
prefer solvent-swollen polymer with large swelling
ratios, materials with low values are used. The
chemical potential as a function of swelling stretch
with representative v values is shown in Figure 3.

Homogeneous state of deformation for
solvent-swollen polymer rod equilibrated
with a solvent and a uniaxial force

When a solvent-swollen polymer rod is subject to a
uniaxial stress along the longitudinal direction, the

Figure 3 The free-swelling stretch of a solvent-swollen
polymer is plotted as a function of the chemical potential
of the solvent molecules with representative v values
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.].
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solvent-swollen polymer would be equilibrated in a
solvent of chemical potential and uniaxial stress. The
state of deformation can be characterized by the lon-
gitudinal stretch k1 and two transverse stretches k2 ¼
k3. The schematic depiction of stretches for the sol-
vent-swollen polymer is shown in Figure 4. In this
case, the eqs. (21) and (29) would be expressed as,

1þ vC ¼ k1k
2
2

W ¼ 1
2NkTðk21 þ 2k22 � 3� 2 log k1k

2
2Þ

� kT
v mC log 1þ 1

mC

� �þ v
1þmCð Þ

h i
8>><
>>: : ð34Þ

The stresses in the transverse directions vanish, so
that eq. (31) gives,

l2 ¼
@W

@ �Cð Þ ¼ � @W

@ Cð Þ ¼ � @Ws

@C
þ @Wm

@C

� �

) l2
kT

¼ �Nv
1

k1
� 1

k1k
2
2

 !

� log 1� 1

k1k
2
2

 !
� 1

k1k
2
2

� v

k21k
4
2

ð35Þ

Equation (35) gives the equilibrium chemical
potential of the solvent-swollen polymer when it is
subject to a longitudinal stress. The left-hand side of
equation corresponds to the stretch ratio k1/k2 and
parameter v, and these relationships are identified in
Figure 5. Figure 5(a) and (b) characterize the relation-
ship between l2/kT function and stretch ratio k1/k2.
For a given parameter, say v ¼ 0 or v ¼ 0.5, the l2/kT
function sharply reaches to a constant maximum
value, when longitudinal stress was applied to make
solvent-swollen polymer stretched to a proper value.
With further stretching solvent-swollen polymer, the
l2/kT function gets smaller as the given stretch ratio
is reached. On the other hand, with parameter v
increases from 0 to 0.5, the maximum value of l2/kT
function is shifted to higher maximum. As it is
known, when the parameter v is increased, it is more
difficult to mix the polymer with solvent. The chemi-
cal potential of solvent-swollen polymer is increased
indirectly resulting from the increase in enthalpy and
Gibbs free-energy, as shown in eqs. (5), (6), and (11).

Figure 5(c) and (d) show the effects of the parameter
v on l2/kT as a function of stretch k1, for a given
stretch ratio k1/k2. The function l2/kT has a different
maximum with respect to parameter v. At first, the
l2/kT firstly sharp increases with the stretch k1
increases. Then it gradually decreases with parameter
k1 further increases. That’s because the stretches
change of the solvent-swollen polymer subjected to a
solvent is critically determined by stress applied on
the system at the beginning, and then is seriously
determined by the stretching free-energy and mixing

free-energy. On the other hand, with the parameter v
increases, it is difficult for solvent-swollen polymer to be
mixed with solvent, the stretch change has a more stron-
ger relation with stress. Here, higher stress is needed to
help the stretch ratio k1/k2 to reach the fixed constant.
Combining eqs. (24) and (34) could relate the lon-

gitudinal stress to the stretches:

vS1
kT

¼ v

kT
� @W

k1

� �
¼ Nv k1

�
1þ 2

B2

�
� 3

k1

� �

þ 3k21
B2

log 1� B2

k31

 !
þ 3

k1
þ 3vB2

k41

" #
: ð36Þ

For a prescribed parameter k1/k2 ¼ B (where B is
a given constant), this part of equation provides the
equilibrium relation of stress mS1/kT, using the v
and k1 as parameters.
Equation (36) gives the equilibrium of mS1/kT

function for the solvent-swollen polymer being sub-
ject to a longitudinal stretch and solvent. The left-
hand side of each curve corresponds to k1, k2, and
parameter v. The characteristic of mS1/kT, using the
v and stretch ratio k1/k2 as parameters is plotted in
Figure 6. Figures 6(a) and (b) plot the relation
between mS1/kT function and stretch ratio k1/k2. For
a given parameter, say v ¼ 0 or v ¼ 0.5, the mS1/kT
function gradually decreases with increasing values
of stretch, k1. On the other hand, with stretching
ratio k1/k2 increases from 2 to 3, the mS1/kT function
decreases more slowly. This numerical result reveals
that the higher stretching ratio, the stress reaches
to a constant value with higher stretch k1. And a
decrease in mS1/kT is more slow.
Figures 6(c) and (d) show the effects of the param-

eter v on mS1/kT as a function of stretch k1, for a
fixed stretch ratio k1/k2. As a fixed level of the
stretch ratio k1/k2, the function mS1/kT gradually
increases with respect to k1. With the parameter v
increases, the mS1/kT also increases. That’s because if
mixing solvent-swollen polymer with solvent
becomes more difficult, the contribution of stress

Figure 4 A SMP in contact with a solvent and subject to
a uniaxial stress [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.].
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should be increased to make the solvent-swollen
polymer stretched to the same state.

Effect of swelling-induced chemical potential
on shape-memory behavior of SMP

Shape-memory effect of SMP obeys with the relaxa-
tion theory, and the relationship between relaxation
time and activation energy can be expressed by
Eyring equation as,14,27

s ¼ s0 exp
DE
RT

� �
; (37)

where s is the relaxation time (is analogous to
shape-memory recovery time), DE is the activation
energy of chain mobility, R is the gas constant, T is
the absolute temperature and s0 is a given constant.
As presented in eq. (37), it is found that the shape-
memory recovery time either can be determined by
internal activation energy of polymer or sample
temperature. Based on previous study,14 there is an

internal energy change in polymer when it is subject
to a solvent on mixing. Therefore, the shape-memory
behavior is inductively affected. And the relation
between chemical potential and relaxation time can
be expressed as,

s ¼ s0 exp
DEþ DU

RT

� �
; (38)

where the U ¼ Nl2, and N is the Avogadro’s
number. Equation (38) presents the behavior of
one molar polymer. As presented in eqs. (32) and
(35) the chemical potential of solvent system is
given for free-swelling and constraint swelling. In
contrary, the negative value of chemical potential
in solvent system is considered as the correspond-
ing chemical potential of polymer inside polymer
system. Based on the eq. (38), the relation
between relaxation time change and chemical
potential can be obtained. As presented in eq.
(38), the internal activation energy is determined
by the internal energy of polymer. Thereafter, the

Figure 5 Numerical results for the constraint swelling of a SMP immersed in a solvent. (a) Relation of l2/kT function
with k1/k2, for a given parameter v ¼ 0. (b) Relation of l2/kT function with k1/k2, for a given parameter v ¼ 0.5. (c) Rela-
tion of l2/kT function with v, for a given parameter k1/k2 ¼ 1.5. (d) Relation of mS1/kT function with v, for a given pa-
rameter k1/k2 ¼ 3 [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.].
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Figure 6 Numerical results for the constraint swelling of a SMP immersed in a solvent. (a) Relation of mS1/kT function
with k1/k2, for a given parameter v ¼ 0. (b) Relation of mS1/kT function with k1/k2, for a given parameter v ¼ 0.5. (c)
Relation of mS1/kT function with v, for a given parameter k1/k2 ¼ 2. (d) Relation of mS1/kT function with v, for a given
parameter k1/k2 ¼ 3 [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.].

change in internal energy will influence the inter-
nal activation energy. Finally, the change in chem-
ical potential indirectly or inductively influences
the internal activation energy, which determines
the shape-memory effect of SMP, as shown in eq.
(39).

s ¼ s0 exp
DEþ �Nl2ð Þ

RT

� �
; (39)

Combining eqs. (33) and (35) with (39) the effect of
chemical potential on relaxation time can be written,

s
s0

¼ exp
�Nl2
RT

� �
¼ exp

�l2
kT

� �
¼ exp� Nv

1

k
� 1

k3

� �
þ log

k3 � 1

k3
þ 1

k3
þ v

k6

� �	 

s
s0

¼ exp
�Nl2
RT

� �
¼ exp

�l2
kT

� �
¼ exp� Nv

1

k1
� 1

k1k
2
2

 !
þ log 1� 1

k1k
2
2

 !
þ 1

k1k
2
2

þ v

k21k
4
2

( )
8>>><
>>>:

; (40)

As shown in Figure 7, the s/s0 function of SMP
decreases at the beginning of mixing, whatever the
shape recovery of SMP is achieved by homogenous de-
formation or inhomogeneous deformation. However,
with stretches of SMP further increase, the s/s0 function

increases with respect to k1. When the parameter v
increases, the solvent-swollen polymer becomes difficult
to mix with solvent, resulting in s/s0 function seriously
decreased before the stretches are obviously changed.
All these results could be accounted by the experimental
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phenomena,12–14 rubber elastic theory,16 polymer solu-
tion theory,17 and free-energy function.20–24

Subsequently, it is desired to achieve chemo-
mechanical shape-memory recovery actuation by

swelling-induced decrease in chemical potential on
mixing, instead of increasing sample temperature.
On this motivation, demonstration of shape recovery
actuation of styrene-based SMP induced by free

Figure 7 Numerical results for the free and constraint swelling of a SMP immersed in a solvent. (a) Relation of s/s0
function with v, for a free swelling with k1 ¼ k2 ¼ k3 ¼k. (b) Relation of s/s0 function with v, for a constraint swelling
with k1 ¼ 1.5k2 ¼ 1.5k3 [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.].

Figure 8 (a) Shape-memory recovery of styrene-based SMP induced by free swelling. (b) Dimensions change of tested
sample before and after swollen by solvent [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.].
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swelling was conducted out in toluene solvent. The
straight (original shape) SMP sheet sample with
dimension of 46 � 11 � 5 mm was bent into a ‘‘N’’-
like shape at 85�C (Tg þ 20�C), and then retained this
shape during cooling back to the temperature of 45�C
(Tg � 20�C). No apparent recovery was found after
the deformed sheet was kept in air for more than 6
hours. However, after immersion in toluene at a tem-
perature of 45�C for 40 min, the deformed SMP sam-
ple started to return to its original shape. As shown
in Figure 8(a), a change in shape from deformed
shape to original shape occurred within 40 min. After
another 90 min immersion, the tested SMP sample
almost regained its straight shape. Additionally, the
dimensions of the SMP sample were swollen to 53 �
13 � 7 mm, as shown in Figure 8(b).

As it is known, there is no polar group in toluene
solvent molecules having chemical reaction with sty-
rene-based SMP macromolecules. Therefore, only
swelling-induced shape recovery actuation could be
used to account for these experimental results. It is
expected that the toluene solvent molecules diffuse
into polymer network, the internal energy of poly-
mer network is indirectly depressed resulting from
stretching and mixing behaviors. Finally, the relaxa-
tion time of SMP is significantly decreased as
expected from eq. (40).

CONCLUDING REMARKS

This article formulates the phenomenon of swelling-
induced actuation of SMP by immersing it into a sol-
vent and subject to chemo-mechanical loads. It is
shown that the stretching and mixing processes
result in the change in chemical potential of
polymer, leading to relaxation time decreased. In
subsequence, the swelling-induced shape-recovery
actuation is inductively achieved when the internal
energy of polymer is reduced to a proper level.
Using free-energy function, we show that the field
in the equilibrated SMP has a critical relationship
with stretches, stretch ratio, Flory–Huggins parame-
ter v, and chemo-mechanical loads. We implement
this free-energy function in the Eyring equation.
This implementation enables us to use various two-
and three-dimensional elements, and analyze diverse
phenomena accompanying swelling-induced shape-
memory actuation. It is hoped that this approach
will help to recognize the mechanism and model
the chemo-mechanical behavior of swelling-induced
SMP in response to solvent (or solution). The
chemo-mechanical model has been developed to
simulate the performance and predicts the respon-

sive deformation of SMP. To solve the model con-
sisting of multiple coupled fields, the free-energy
function and polymer physics are employed. The
model has been examined for its efficiency by com-
paring with numerically simulated data and experi-
mental phenomena.

This work has been financially supported by ‘‘the Funda-
mental Research Funds for the Central University (Grant No.
HIT. NSRIF. 201157)’’.
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